It creates a 'lab.qcdata' class object to perform the interlaboratory study. This object is used to plot ILS data and more.
Usage
lab.qcdata(
  data,
  var.index = 1,
  replicate.index = 2,
  material.index = 3,
  laboratory.index = 4,
  data.name = NULL
)Arguments
- data
- Matrix or data-frame that contains the data, replicate index, type of material, and the laboratory. 
- var.index
- Scalar with the column number corresponding to the observed variable (the critical to quality variable). Alternatively, a string with the name of a quality variable can be provided. 
- replicate.index
- Scalar with the column number corresponding to the index each replicate. 
- material.index
- Scalar corresponding to the replicated number. 
- laboratory.index
- Scalar that defines the index number of each laboratory. 
- data.name
- String specifying the name of the variable which appears on the plots. If name is not provided, it is retrieved from the object. 
Examples
library(ILS)
data(Glucose)
Glucose.qcdata <- lab.qcdata(Glucose)
str(Glucose.qcdata)
#> Classes ‘lab.qcdata’ and 'data.frame':	120 obs. of  4 variables:
#>  $ x         : num  41 41.5 41.4 41.2 42 ...
#>  $ replicate : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
#>  $ material  : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ laboratory: Factor w/ 8 levels "Lab1","Lab2",..: 1 1 1 2 2 2 3 3 3 4 ...
#>  - attr(*, "data.name")= chr "Glucose"
summary(Glucose.qcdata)
#>        x          replicate material   laboratory
#>  Min.   : 39.02   1:40      A:24     Lab1   :15  
#>  1st Qu.: 78.45   2:40      B:24     Lab2   :15  
#>  Median :135.03   3:40      C:24     Lab3   :15  
#>  Mean   :149.09             D:24     Lab4   :15  
#>  3rd Qu.:196.66             E:24     Lab5   :15  
#>  Max.   :309.40                      Lab6   :15  
#>                                      (Other):30  
